- Published on
LangChain vs. LangGraph
- Authors
- Name
- Gene Zhang
Video: LangChain vs LangGraph: A Tale of Two Frameworks
- LangChain = What happens inside each node (LLM prompt → output → tool call)
- LangGraph = How nodes pass messages & state (graph scheduler + checkpoints)
Both coexist: every LangGraph node is still a LangChain Runnable, so moving from linear chains to a stateful graph is mostly about adding the orchestration layer, not rewriting the business logic.
Typical Workflows
LangChain Workflow
graph TB
A[Input] --> B[Prompt Template]
B --> C[LLM]
C --> D[Output Parser]
D --> E[Final Output]
style A fill:#e1f5fe
style E fill:#c8e6c9
LangGraph Workflow
graph TB
A[Input State] --> B[Agent Node]
B --> C{Decision}
C -->|Tool Needed| D[Tool Node]
C -->|Continue| E[LLM Node]
D --> F[State Update]
E --> F
F --> G{More Steps?}
G -->|Yes| B
G -->|No| H[Final State]
style A fill:#e1f5fe
style H fill:#c8e6c9
style C fill:#fff3e0
style G fill:#fff3e0